Home > 2010 novelties, aerodynamic, Mc Laren MP4/25 Mercedes, MP4/25 rear wing & F-duct > Mc Laren’s innovative rear wing system ( F-duct)

Mc Laren’s innovative rear wing system ( F-duct)


Mc Laren constructed  its 2010 condenter , the MP4/25 , equipped with a new innovative system , called the F-duct which helped the car to achieve higher top speed at straights without loosing downforce at corners .

Official name of the system :

         While press and media called the system “The F-duct” , Mc Laren officially coded the system as  “RW80” meaning Rear Wing version 80

What is the benefit from such a  system :

          The driver at will can blow a high velocity airstream to the rear wing at straights , causing the it to stall , gaining a significant greater top speed for the MP4/25 up to 7-12 km/h  according to the tuning of the system and the track characteristics . The system was found to be within the rules by the FIA .

Why the system was considered to be legal :

        Several teams protested against the legality of the system when it gained publicity but FIA had already gave the green light to Mc Laren to develop such a system because the non movable-flexing wing plane principle is not violated as the system alters only the airflow around the wing and not the wing’s flexibility  .  Rival teams rushed to copy the system with the first one to be Sauber , while Ferrari , Red Bull , Williams , Force India and much later Renault and Toro Rosso also launched their own versions of the system .

    For 2011 the rear wing stalling system was ruled out of the regulations in favor of the new  rear wing attack angle adjustment mechanism .

How the system is activated :

       The air entering the nose snorkel can be blocked by the drivers left leg at will and as a result  the airflow  inside the engine cover is forced by changed pressure to circulate via a certain tube to reach  the rear wing causing it to stall .

Parts of the system :

 

The system  functions with the combination of  three different air inlets which are :

(A)  a nose duct  ( spotted where the F letter of the Vodafone logo exists and so called F-duct ) –  (Number 4 )

(B)  an inlet located behind the driver’s helmet  under the primary airbox inlet to receive airflow –  (Number 3 )

(C)  airbox second upper  inlet –  (Number 1 )

[The number 2 inlet feeds the engine with air and has nothing to do with the system]

         The received airflow from the nose duct  is directed via a tube inside and around the cockpit ending inside the engine cover . There it meets a second  richer airflow coming from the (B) inlet. The summoned airflows then enter a  system of tubes housed inside the engine cover .  The airflow coming from the  (C) airbox upper inlet also enters this system of tubes

How the system functions :

     Activated  system                                                                    

                             

         When the system is active ( at driver will ) the airflow entering the (C) airbox inlet  circulates via a certain tube , gaining gradually velocity  with the help of a venturi effect , to reach  a hole located on the centre zone of the rear wing profile ( yellow arrow ) . The airflow  hits the wing and exits  behind the  wing’s profile  via a small additional pair of wavy shaped slits  , disrupting airflow and causing the wing to stall . As a result  the  wing’s drag production is significantly decreased in favor of top speed   .

      blown aiflow wing inlet

wing blown aiflow exits behind the  wing’s profile  via a small additional pair of wavy shaped slits 

When system is inactive  the air inside the engine cover flows into a second tube  exiting  above the  beam wing  leaving the rear wing unaffected .

   deactivated system

Pre-2010 season variations of the system  :

        The system is much complicated and the team tested various versions before launching it at Bahrain . The visual variations regarding the nose snorkel  are the following  .

    Winter testing      

                                      

   Winter testing  – a rectangular piece of carbon seals the  upper inlet surface 

   Bahrain

                                                                             

 

Developments during 2010 season of the system

       During season Mc Laren developed further the system . The season developments regarding the  system’s activation way ,which was revised from driver’s knee to driver’s hand  and the different system’s tuning and air exiting  ways , are going to be described in future posts  .

  1. Peter
    December 14, 2010 at 10:19 pm

    “wing blown aiflow exits behind the wing’s profile via a small additional pair of wavy shaped slits ”

    I wonder how much passing air inpacts on the size of the split when system is activated?

  2. type056
    December 15, 2010 at 12:03 am

    Brilliant job.

  3. October 24, 2018 at 2:35 pm

    Kindly clear dout….
    you have mentioned that when airflow hits fast at rear wing, wing will stall and drag will reduce but logically if stall occurs,flow separation and vortices will be high and drag also will be more then how come drag reduced
    ?

  1. May 24, 2013 at 9:55 pm

Leave a comment